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Abstract. Cement is used in the oil industry to line oil wells. The major component of oilwell cement is tricalcium
silicate (C3S), which is responsible for the initial thickening of the cement slurry. It is important to control the
time that it takes for this slurry to thicken, and this is achieved in practice by the addition of chemical retarders,
which delay the onset of thickening. In this paper, the action of a retarder whose main effect is to form a complex
with calcium ions is investigated by use of a model for the hydration of C3S previously investigated by Preece,
Billingham and King (2001). It is found that such a retarder can significantly increase the thickening time of pure
tricalcium silicate.
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1. Introduction

Oilwell cement is used to secure a cylindrical metal liner in a newly drilled well, and thereby
isolate the well from the surrounding formation. Accurate control of the thickening time, that
is the time after initial mixing when the cement can no longer be pumped, is crucial in this
process. If the thickening time is too short, the cement fails to reach its required placement,
whilst too long a thickening time leads to costly delays [1, Chapter 2]. It is usual to control the
thickening time using chemical additives, known as retarders, typically, phosphonates (see for
example, [2]). The mechanism by which phosphonates and other chemicals act as retarders is
not well understood, but it is known that they bind to calcium ions [3, Chapter 11]. Although
other features of the chemistry of retarders may be important in their retarding action, for
example the ability of phosphonates to inhibit the growth of ettringite crystals [4], we will
focus on their action on calcium ions in this paper.

In an earlier paper [5], we argued that the early stages of cement hydration are dominated
by the hydration of the main constituent of oilwell cement, tricalcium silicate (C3S), to form
hydrated calcium silicate gel (CSH) and calcium hydroxide (CH). Note that we are using the
usual cement nomenclature where C represents calcium oxide, CaO, S represents silicate, SiO2

and H represents water, H2O. We showed that the representation of this process in terms of
dissolution-precipitation reactions leads to a model that agrees well with experimental results,
assuming that the thickening time is signalled by either the beginning of the precipitation of
CH or by the formation of a sufficient amount of CSH gel.
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In this paper, we will consider the effect of including a retarder in the reaction scheme
described by Preece, Billingham and King [5] for the hydration of pure C3S. This retarder
binds to calcium ions, making them unavailable for precipitation as either CSH gel or CH. We
will see that the action of such a retarder is to significantly increase the thickening time of the
system.

2. The mathematical model

We consider the dissolution of a spherical grain of C3S that lies in 0 ≤ r ≤ r0. During the
induction period, which we study here, only a small amount of this grain dissolves, so we
assume that the boundary of the grain is fixed at r = r0. We take into account the presence of
other grains of C3S by allowing no flux of chemicals through a spherical boundary at r = r1.
Initially, the grain is surrounded by water with a uniform initial concentration of the retarder
alone. We assume that the chemical species react and diffuse in the region r0 < r < r1.
Since the diffusivities of these ions differ only slightly, we assume equal diffusivities, D, for
simplicity.

The three chemical reactions that we assume dominate the early stages of the hydration of
C3S are firstly, a surface reaction at r = r0, the dissolution of C3S,

C3S + 3H2O → 3Ca2+ + 4OH− + H2SiO2−
4 , rate k1, (1)

and secondly, two bulk reactions, the precipitation of CSH gel,

H2SiO2−
4 + 3

2
Ca2+ + OH− + H2O → CSH,

rate k2H
([

Ca2+]3/2 [
OH−] [

H2SiO2−
4

] − Seq

)
H (CSHmax − [CSH]), (2)

and the binding of calcium ions to the retarder,

Ca2+ + R → CaR, rate k3
[
Ca2+]

[R], (3)

where CaR is a retarder/calcium ion complex, which remains in solution. In these rate laws,
k1, k2 and k3 are reaction-rate constants and H is the Heaviside step function. The dissolution
of C3S proceeds at a constant rate. The precipitation of CSH proceeds at a constant rate,
provided that the solubility product exceeds its equilibrium value, Seq, and the concentration
of CSH is below CSHmax, a concentration that represents saturation with CSH. The binding of
calcium ions to the retarder follows the law of mass action. Note that we have not explicitly
included the precipitation of calcium hydroxide, Ca2+ + 2OH− → Ca(OH)2 = CH. Once
the solubility product, [Ca2+][OH−]2, reaches its saturated value, the precipitation of calcium
hydroxide will occur. As we noted earlier, the end of the thickening period may be signalled
either by this precipitation or by that of a sufficient quantity of CSH gel. For further discussion
of the reaction scheme and the associated reaction rate laws, see [5].

Suitable scales with which to nondimensionalize the variables are
[
Seq

]2/7
, r0 and r2

0/D for
concentrations, distance and time, respectively. This leads to the dimensionless initial/boundary
value problem

∂α

∂τ
= 1

ρ2

∂

∂ρ

(
ρ2 ∂α

∂ρ

)
− 3

2
k̄2H

(
α3/2βγ − 1

)
H (δmax − δ) − k̄3αθ, (4)
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∂β

∂τ
= 1

ρ2

∂

∂ρ

(
ρ2 ∂β

∂ρ

)
− k̄2H

(
α3/2βγ − 1

)
H (δmax − δ) , (5)

∂γ

∂τ
= 1

ρ2

∂

∂ρ

(
ρ2 ∂γ

∂ρ

)
− k̄2H

(
α3/2βγ − 1

)
H (δmax − δ) , (6)

∂δ

∂τ
= k̄2H

(
α3/2βγ − 1

)
H (δmax − δ) , (7)

∂θ

∂τ
= 1

ρ2

∂

∂ρ

(
ρ2 ∂θ

∂ρ

)
− k̄3αθ, (8)

to be solved subject to

∂α

∂ρ
= −3k̄1,

∂β

∂ρ
= −4k̄1,

∂γ

∂ρ
= −k̄1,

∂θ

∂ρ
= 0 at ρ = 1, (9)

∂α

∂ρ
= ∂β

∂ρ
= ∂γ

∂ρ
= ∂θ

∂ρ
= 0 at ρ = ρ1, (10)

α = β = γ = δ = 0, θ = θ0 when τ = 0 for 1 < ρ < ρ1. (11)

The dimensionless chemical concentrations are

α =
[
Ca2+]
S

2/7
eq

, β =
[
OH−]
S

2/7
eq

, γ =
[
H2SiO2−

4

]
S

2/7
eq

, δ = [CSH]

S
2/7
eq

, θ = [R]

S
2/7
eq

.

The dimensionless reaction rate constants are

k̄1 = k1r0

DS
2/7
eq

, k̄2 = k2r
2
0

DS
2/7
eq

, k̄3 = k3r
2
0S

2/7
eq

D
;

δmax = CSHmax/S
2/7
eq is the dimensionless maximum concentration of CSH gel, θ0 is the

dimensionless initial concentration of the retarder and ρ1 = r1/r0 is the dimensionless radius
of the outer boundary. Note that the water/cement ratio, by mass, is

(
ρ3

1 − 1
)
/µ, where µ ≈

3·12 is the relative density of C3S.

3. Asymptotic solution

We are interested in the solution of (4) to (11) when the retarder reacts rapidly to bind with
calcium ions, so we seek an asymptotic solution valid when k̄−1

3 � 1. Since α = β = γ = 0
when τ = 0, we are mainly interested in the solution when H

(
α3/2βγ − 1

) = 0, and there
is no precipitation of CSH gel (δ = 0). In particular, if we write ε = k̄−1

3 for notational
convenience, we want to solve

∂α

∂τ
= 1

ρ2

∂

∂ρ

(
ρ2 ∂α

∂ρ

)
− ε−1αθ, (12)

∂θ

∂τ
= 1

ρ2

∂

∂ρ

(
ρ2 ∂θ

∂ρ

)
− ε−1αθ, (13)
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subject to

∂α

∂ρ
= −3k̄1,

∂θ

∂ρ
= 0 at ρ = 1, (14)

∂α

∂ρ
= ∂θ

∂ρ
= 0 at ρ = ρ1, (15)

α = 0, θ = θ0 when τ = 0 for 1 < ρ < ρ1, (16)

with ε � 1. The concentrations of hydroxide and silicate ions, β and γ , simply diffuse
independently of α and θ until CSH gel begins to form.

3.1. INITIAL TRANSIENT, τ = O(ε)

Although (12) suggests that α is exponentially small, we know from (14) that ∂α/∂ρ = O(1)

at ρ = 1. This suggests that we require a boundary layer at ρ = 1. The richest balance of
terms can be obtained by the rescaling

ρ = 1 + ε1/2ρ̂, τ = ετ̂ , α = ε1/2α̂, θ = θ0 + ε1/2θ̂ , (17)

with ρ̂, τ̂ , α̂, θ̂ = O(1) for ε � 1. Note that when τ̂ = O(1), τ = O(ε) � 1, so that this
scaling captures the initial transient behaviour of the solution. In terms of the variables (17),
(12) to (16) become

∂α̂

∂τ̂
= 1(

1 + ε1/2ρ̂
)2

∂

∂ρ̂

{(
1 + ε1/2ρ̂

)2 ∂α̂

∂ρ̂

}
− α̂

(
θ0 + ε1/2θ̂

)
, (18)

∂θ̂

∂τ̂
= 1(

1 + ε1/2ρ̂
)2

∂

∂ρ̂

{(
1 + ε1/2ρ̂

)2 ∂θ̂

∂ρ̂

}
− α̂

(
θ0 + ε1/2θ̂

)
, (19)

subject to

∂α̂

∂ρ̂
= −3k̄1,

∂θ̂

∂ρ̂
= 0 at ρ̂ = 0, (20)

∂α̂

∂ρ̂
= ∂θ̂

∂ρ̂
= 0 at ρ̂ = ε−1/2 (ρ1 − 1), (21)

α̂ = θ̂ = 0 when τ̂ = 0 for 0 < ρ̂ < ε−1/2 (ρ1 − 1). (22)

At leading order, we must therefore solve

∂α̂

∂τ̂
= ∂2α̂

∂ρ̂2
− θ0α̂, (23)

∂θ̂

∂τ̂
= ∂2θ̂

∂ρ̂2
− θ0α̂, (24)

subject to
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∂α̂

∂ρ̂
= −3k̄1,

∂θ̂

∂ρ̂
= 0 at ρ̂ = 0, (25)

α̂ → 0, θ̂ → 0 as ρ̂ → ∞, (26)

α̂ = θ̂ = 0 when τ̂ = 0 for ρ̂ > 0. (27)

By taking a Laplace transform of (23) we find that

α = 3k̄1

2π i

∫ c+i∞

c−i∞
esτ̂−√

s+θ0ρ̂

s
√

s + θ0
ds,

where c is a strictly positive real constant. By closing this contour in the left half plane, we
find that

α̂ = 3k̄1e−√
θ0ρ̂

√
θ0

− 3k̄1e−θ0τ̂

π

∫ ∞

0

e−uτ̂ cos
(
ρ̂
√

u
)

u (u + θ0)
du. (28)

As τ̂ → ∞, the second term tends to zero exponentially fast, and we conclude that this is
an initial transient that allows the solution to adjust from its initial value of zero to the steady
state solution, which is represented by the first term. As ρ̂ → ∞, α̂ → 0 exponentially fast,
and we conclude that α̂ is exponentially small outside this boundary layer.

We can solve for θ̂ by noting that ∂(α̂ − θ̂ )/∂ρ̂ is a similarity solution of the diffusion
equation. We find that

θ̂ = α̂ − 3k̄1

{√
4τ̂

π
exp

(
− ρ̂2

4τ̂

)
− ρ̂ erfc

(
ρ̂

2
√

τ̂

)}
. (29)

As ρ̂ → ∞, θ̂ decays exponentially fast, and we conclude that θ̂ is also exponentially small
outside the boundary layer. As τ̂ → ∞, θ̂ ∼ −3k̄1

√
4τ̂ /π for ρ̂ = O(1), which gives

θ ∼ θ0 − ε1/23k̄1

√
4τ̂

π
.

This expansion is non-uniform when τ̂ = O(ε−1), τ = O(1).

3.2. STEADY CONSUMPTION OF CALCIUM IONS, τ = O(1)

The structure that emerges from the initial transient is of a boundary layer with width of O(ε)

and an outer region where α is exponentially small.

3.2.1. Boundary layer
In the boundary layer, when τ = O(1),

∂2α̂

∂ρ̂2
− α̂θ = O(ε1/2), (30)

∂2θ

∂ρ̂2
− ε1/2α̂θ = O(ε), (31)

subject to
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∂α̂

∂ρ̂
= −3k̄1,

∂θ

∂ρ̂
= 0 at ρ̂ = 0, (32)

and, from matching to the initial transient solution as τ → 0,

α̂ = 3k̄1e−√
θ0ρ̂

√
θ0

, θ = θ0 when τ = 0 for ρ̂ > 0. (33)

If we now expand

θ = θ̄0 + ε1/2θ̄1 + O(ε),

we find that θ is spatially-uniform at leading order, with θ̄0 ≡ θ̄0(τ ). At leading order, this
gives

α̂ = 3k̄1e−
√

θ̄0(τ )ρ̂√
θ̄0(τ )

, (34)

which then shows that

θ̄1 = A1(τ ) + 3k̄1

(
ρ̂ + e−

√
θ̄0ρ̂√

θ̄0

)
, (35)

where A1(τ ) is undetermined at this order. To complete the solution, we must determine θ̄0(τ )

by matching with the outer solution.

3.2.2. Outer solution
In the outer region, O(ε1/2) < ρ < ρ1, α is exponentially small, so that, to all algebraic
orders, the retarder simply diffuses in the bulk, with

∂θ

∂τ
= 1

ρ2

∂

∂ρ

(
ρ2 ∂θ

∂ρ

)
, (36)

subject to

∂θ

∂ρ
= 0 at ρ = ρ1. (37)

In order to match with the boundary-layer solution, we note that, as ρ̂ → ∞, the boundary-
layer solution has

θ ∼ θ̄0(τ ) + 3k̄1ε
1/2ρ̂ = θ̄0(τ ) + 3k̄1(ρ − 1),

and hence that the appropriate matching condition is

∂θ

∂ρ
= 3k̄1 at ρ = 1. (38)

There is therefore a flux of retarder into the boundary layer that exactly balances the flux of
calcium ions into solution. These two species react rapidly in the boundary layer to form the
complex CaR.

In this outer region, we must therefore solve (36) subject to (33), (37) and (38), which
determines θ̄0(τ ) = θ(1, τ ). We could solve this initial/boundary value problem using Laplace
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transforms, but this would just lead to a complicated and impenetrable formula. Fortunately,
we are only really interested in the solution at large times.

3.3. LARGE-TIME SOLUTION, τ 
 1

The initial/boundary-value problem given by (36) subject to (33), (37) and (38) represents a
diffusion problem on a bounded domain with a constant rate of influx. After a long time,
when diffusion has distributed the retarder uniformly across the domain, at leading order
we therefore expect that the concentration θ grows linearly with time whilst being spatially
uniform. We can verify this by looking for an asymptotic solution, valid for τ 
 1, of the
form

θ = f0(ρ)τ + f1(ρ) + o(1). (39)

In addition, by integrating (36) over 1 ≤ ρ ≤ ρ1 we obtain∫ ρ1

1

∂(ρ2θ)

∂τ
dρ =

[
ρ2 ∂θ

∂ρ

]ρ1

1

= −3k̄1,

and hence, by integrating again with respect to τ ,∫ ρ1

1
ρ2θ(ρ, τ) dρ = 1

3

(
ρ3

1 − 1
)
θ0 − 3k̄1τ. (40)

This simply states that the total amount of retarder in the system is equal to the initial amount
less the amount that has diffused into the boundary layer and been bound to calcium ions. In
particular, substituting (39) in (40) gives∫ ρ1

1
ρ2f0(ρ) dρ = −3k̄1,

∫ ρ1

1
ρ2f1(ρ) dρ = 1

3

(
ρ3

1 − 1
)
θ0. (41)

These formulae will enable us to fix two otherwise undetermined constants later.
On substituting the expansion (39) in (36), (33) and (37), we obtain, at O(τ),(
ρ2f ′

0

)′ = 0, subject to f ′
0 = 0 at ρ = 1 and ρ = ρ1.

This means that f0 is a constant and, using (41),

f0 = − 9k̄1

ρ3
1 − 1

.

At O(1),(
ρ2f ′

1

)′ = ρ2f0, subject to f ′
1 = 3k̄1 at ρ = 1 and f ′

1 = 0 at ρ = ρ1.

This has solution

f1 = 1

3
f0

(
1

2
ρ2 + ρ3

1

ρ

)
+ c1,

which is monotone increasing with ρ, and satisfies both boundary conditions whatever the
value of the constant c1. However, on substituting this solution in (41), we can determine c1

and arrive at
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Figure 1. The times τ1 and τ2 (for θ0 > k̄3/5 ≈
10·5) when k̄1 = 0·35, k̄3 = 50 and ρ1 = 4.

Figure 2. The numerical and asymptotic solutions
for α and θ when τ = 2, θ0 = 10, k̄1 = 0·35,
k̄3 = 50 and ρ1 = 4.

f1 = θ0 + 9k̄1

(ρ3
1 − 1)2

(
3

5
ρ5

1 − 1

2
ρ3

1 − 1

10

)
− 3k̄1

ρ3
1 − 1

(
1

2
ρ2 + ρ3

1

ρ

)
,

and hence

θ = θ0 + 9k̄1

(ρ3
1 − 1)2

(
3

5
ρ5

1 − 1

2
ρ3

1 − 1

10

)
− 3k̄1

ρ3
1 − 1

(
1

2
ρ2 + ρ3

1

ρ

)

− 9k̄1

ρ3
1 − 1

τ + o(1) for τ 
 1.

(42)

The minimum value of θ̄0 is therefore

θ̄0 = θ(1, τ ) ∼ θ0 − 3k̄1
(
5ρ6

1 − 9ρ5
1 + 5ρ3

1 − 1
)

5
(
ρ3

1 − 1
)2 − 9k̄1

ρ3
1 − 1

τ as τ → ∞. (43)

We can use this value in (34) to determine how the calcium ion concentration behaves in the
boundary layer for τ 
 1.

We are now in a position to ask when the solution that we have constructed becomes
nonuniform. There are two possibilities. Firstly, if θ0 is sufficiently large, we can use (43) to
determine when the concentration of the retarder becomes small at ρ = 1. This occurs when
τ ≈ τ1, where

τ1 = ρ3
1 − 1

9k̄1
θ0 − 5ρ6

1 − 9ρ5
1 + 5ρ3

1 − 1

15
(
ρ3

1 − 1
) . (44)

In effect, we assume that (43) remains asymptotic, even though the two terms in the expansion
for τ 
 1 may not be uniformly ordered when θ0 
 1.

Secondly, we have assumed that α3/2βγ < 1, so that CSH gel has yet to precipitate out of
solution. We know from (34) that

α(1, τ ) ∼ ε1/2 3k̄1√
θ̄0

,
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Figure 3. The total amount of CSH gel, δtot and the
maximum concentration of retarder, θmax, as func-
tions of time, with θ0 = 10, k̄1 = 0·35, k̄3 = 50 and
ρ1 = 4.

Figure 4. The total amount of calcium ion, αtot and
the maximum concentrations of hydroxide and sili-
cate ions, βmax and γmax, as functions of time, when
τ = 2, θ0 = 10, k̄1 = 0·35, k̄3 = 50 and ρ1 = 4.

and that for θ0 
 9k̄1τ/(ρ3
1 −1), so that there is a sufficient initial concentration of the retarder

that little has been consumed, θ̄0 ∼ θ0 and

α(1, τ ) ∼ ε1/2 3k̄1√
θ0

.

By determining the large time solutions for β and γ in the same way as we did for θ , we find
that

β(1, τ ) ∼ 12k̄1

ρ3
1 − 1

τ, γ (1, τ ) ∼ 3k̄1

ρ3
1 − 1

τ,

and hence

α3/2βγ ∼ ε3/4 96
√

3k̄
7/2
1(

ρ3
1 − 1

)2
θ

3/4
0

τ 2 as τ → ∞ for θ0 
 τ .

CSH gel therefore begins to precipitate when τ ≈ τ2, where

τ2 =
(

θ0

ε

)3/8
ρ3

1 − 1

k̄
7/4
1

√
96

√
3
. (45)

This is only true provided θ0 
 τ2, and hence θ0 
 ε−3/5 = k̄
3/5
3 . The times τ1 and τ2 are

shown in Figure 1 for the typical values k̄1 = 0·35, k̄3 = 50 and ρ1 = 4. We can see that
τ1 = τ2 when θ0 = θ∗

0 ≈ 21·7. For θ0 < θ∗
0 , we would expect that the retarder will run

out before any CSH gel is formed, whilst for θ0 > θ∗
0 , we expect that some CSH gel will be

formed when τ > τ2, because the concentrations of the OH− and H2SiO2−
4 ions become large

enough for the solubility product to exceed Seq, even though the concentration of Ca2+ ions is
small.
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Figure 5. The total amount of CSH gel, δtot and the
maximum concentration of retarder, θmax, as func-
tions of time, with θ0 = 30, k̄1 = 0·35, k̄3 = 50 and
ρ1 = 4.

Figure 6. The total amount of calcium ion, αtot and
the maximum concentrations of hydroxide and sili-
cate ions, βmax and γmax, as functions of time, with
θ0 = 30, k̄1 = 0·35, k̄3 = 50 and ρ1 = 4.

4. Numerical solutions

In order to solve the initial/boundary-value problem (4) to (11) numerically, we use an explicit
finite-difference scheme with a nonuniform spatial grid that clusters more points near to ρ =
1, where the steepest gradients occur. For more details, see [5]. We will focus our attention
on the solution when k̄1 = 0·35, k̄3 = 50 and ρ1 = 4. When θ0 = 10 < θ∗

0 , we expect that
the retarder will be completely bound to calcium ions before any CSH gel is formed. Figure 2
shows α and θ when τ = 2, calculated both numerically and using the asymptotic solutions,
(34) and (42). Even though τ is not very large, the agreement is excellent. Figure 3 shows the
total amount of CSH gel,

δtot =
∫ ρ1

1
ρ2δ dρ

and the maximum concentration of retarder, θmax, as functions of time, τ . We can see that as
τ → τ1 ≈ 187, θmax → 0 (the retarder runs out), and δtot starts to increase. Figure 4 shows
that the calcium-ion concentration also starts to increase when τ ≈ τ1, since it is no longer
immediately bound to the retarder, and also that the concentration of hydroxide ion starts to
increase less rapidly, whilst that of silicate ion begins to fall, as they are consumed in the
reaction that produces CSH gel.

We now consider what happens when we increase the initial amount of retarder to θ0 = 30,
when τ1 ≈ 588 > τ2 ≈ 476. As τ → τ2, as predicted, CSH gel starts to form, as can be seen
in Figure 5. However, there is no significant increase in the concentration of calcium ions, α,
until τ → τ1, when the retarder is completely bound to calcium ions, as shown in Figure 6. In
addition, the concentration of CSH gel grows significantly faster once τ > τ1.

If we believe that the end of the induction period occurs when CSH gel starts to form, then
the induction period has duration τ1. If we believe that the end of the induction period occurs
when calcium hydroxide starts to precipitate, then the induction period is longer than τ1, and
ends once αβ2, the solubility product for Ca(OH)2, reaches its saturated value. Note that the
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precipitation of CSH gel follows the pattern, described in detail in [5], of forming in layers of
successively increasing radius.

5. Conclusions

In this paper, we have studied how a retarder that binds to calcium ions can influence the
hydration of tricalcium silicate, the major constituent of oilwell cement. We used a dissolution-
precipitation mechanism introduced by Preece et al. [5], and showed that the action of such
a retarder can significantly increase the length of the thickening time. We used asymptotic
analysis, later verified by numerical integration, to quantify this effect. This allowed us to
obtain analytical expressions for the time at which the retarder is completely bound to calcium
ions, (44), and when CSH gel starts to form in the presence of uncomplexed retarder (45).

Although this mechanism provides a possible explanation for the retardation of the thick-
ening of pure tricalcium silicate, the retardation of the thickening of an oilwell cement slurry is
probably more complex. In particular, it seems likely that the interaction between phosphonate
retarders and ettringite, the hydration product of tricalcium aluminate (C3A) in the presence
of sulphate ions provided by gypsum, is of crucial importance [4]. This is the focus of our
current work [6].
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